Як ШІ-алгоритми допомагають швидше лікувати інсульт?

Стартап Viz.ai розробив 12 алгоритмів, які визначають хвороби пацієнтів за медичними знімками та інформують про це лікарів. Розробками компанії вже користуються понад 1500 лікарень у США, а в майбутньому вона планує працювати із фармацевтичними організаціями і розробляти генеративний ШІ.

Інсульт, який вражає майже 800 000 американців на рік, – це вкрай підступний недуг, який можна не помітити одразу. Що швидше його діагностують та почнуть лікувати, то мінімальніші наслідки для здоров’я людини. Кожна зайва хвилина – смерть близько 2 млн клітин мозку, через що багато пацієнтів отримують ту чи іншу форму інвалідності, важко проходять реабілітацію чи взагалі не можуть жити без сторонньої підтримки.

Із думкою про те, наскільки критичною є кожна хвилина, стартап Viz.ai і створював свої медичні алгоритми. Саме вони порівнюють КТ-скани нових пацієнтів зі своєю базою даних, аби допомогти лікарям швидше встановити діагнози, прискорити доопераційну підготовку і вчасно надати допомогу пацієнтам з інсультами та іншими критичними недугами. 

«Очевидно, що ШІ може точно визначити хворобу, і все йде до того, що він зможе точно спрогнозувати її розвиток», – каже Кріс Мансі, нейрохірург, а також гендиректор і засновник Viz.ai. 

Медичний єдиноріг

Сан-франциський стартап Viz.ai перебуває в авангарді медичних компаній, які використовують штучний інтелект для поліпшення лікування пацієнтів. Компанія потрапила до списку стартапів, які можуть стати єдинорогами, за версією Forbes у 2021-му. Наш прогноз справдився, і сьогодні компанію оцінюють у $1,2 млрд із загальними інвестиціями $254 млн від таких інвесторів, як Insight Partners, Kleiner Perkins, Scale Venture Partners і Tiger Global.

Річний повторюваний виторг компанії зростає вдвічі щороку і очікується, що він досягне $100 млн у 2024-му (а ще у 2020-му він становив лише $12 млн). Річний виторг у фінансових звітах зазвичай нижчий за повторюваний, і у Viz.ai цього року він, імовірно, сягне $40 млн, а наступного – $60–70 млн. Компанія все ще неприбуткова. 

Важливіше те, що ця семирічна компанія підписала собі у партнери понад 1500 американських лікарень, які разом обслуговують майже дві третини населення США. Крім того, вона стала однією із небагатьох ШІ-компаній, яким вдалося отримати схвалення своїх алгоритмів від Управління з контролю за харчовими продуктами і лікарськими засобами (FDA) і включення в Medicare

Сьогодні Viz.ai розширює свою діяльність до генеративного ШІ і в пілотному проєкті компанії вже зголосилися взяти участь лікарні-партнери. Нова розробка має пропонувати коротку анотацію медичних записів пацієнта і переглядати наукові праці, щоб віднаходити доречну інформацію, яку люди могли просто не помітити у потоках академічних робіт. 

Створення анотацій не вимагає схвалення FDA, але якщо програма Viz.ai пропонуватиме клінічні ШІ-підказки, а на це вона і сподівається, то без зеленого світла регулятора ніяк.

Крім того, стартап почав працювати із фармацевтичними компаніями та виробниками медичних пристроїв. Ці бізнеси шукають способів випускати свої продукти швидше та ефективніше, і Viz.ai планує із цим допомагати. 

Зрештою, Мансі сподівається, що поєднання ШІ-аналізу медичних знімків і генеративного ШІ дасть змогу визначати 100 хвороб. Окрім неврології та кардіології, Viz.ai бачить можливості в онкології (наприклад рак легенів, який часто не помічають на рентгенах на ранній стадії хвороби). 

Нейрохірург-підприємець 

Мансі, 39, виріс у Британії і вчився на медичному факультеті у Кембриджі. В університеті він закохався спершу у неврологію, а потім і в нейрохірургію, яка є однією із найскладніших спеціалізацій. 

Пʼять років він проводив операції на мозку в найпрестижніших лікарнях Лондона – Queen Square і King’s College. Мансі на власні очі бачив, як це, коли операція проходить успішно, але пацієнт все одно помирає чи отримує інвалідність через те, що шлях до операційного столу був надто довгим. 

Viz.ai, Кріс Мансі /Forbes

Співзасновник і генеральний директор Viz.ai Кріс Мансі. Фото Forbes

У 2012-му Мансі заснував компанію Edusurg, яка допомагає молодим хірургам готуватися до іспитів онлайн. Це невеликий бізнес, але він продовжує працювати. Два роки по тому він покинув хірургічну практику і поїхав у Штати, щоб отримати диплом MBA Стенфорда. 

У Стенфорді у 2016-му Мансі познайомився із Давидом Ґоланом, який досліджував машинне навчання. Ґолан, котрий більше не працює у Viz.ai, на той час саме вийшов з лікарні, де лежав із підозрою на інсульт. Двох науковців обʼєднало незадоволення браком даних, які б допомогли лікарям ухвалювати кращі медичні рішення. 

На курсі, який викладав колишній гендиректор Google Ерік Шмідт, вони презентували свою ідею використовувати машинне навчання і медичні знімки для покращення лікування інсульту. Викладач запропонував молодим підприємцям посівні інвестиції через свою фірму Innovation Endeavors. 

На той час штучний інтелект не був на такому підйомі, як зараз. А медицина з її регуляторами, високими ризиками і бюрократією, здавалося, була не найпростішим вибором для початку. 

Схвалення FDA

На світанку розробки алгоритму Viz взяла у партнери дві лікарні – Grady й Erlanger. Програма компанії порівнювала КТ-знімки мозку пацієнтів із базою даних сканів, щоб виявити ранні ознаки оклюзії великих судин – це один із різновидів інсульту. На жаль, дуже малий відсоток пацієнтів із таким діагнозом отримують вчасне і відповідне лікування. Програма, яку лікарі встановлювали на телефони, надсилала сповіщення про свої висновки, економлячи дорогоцінний час визначення необхідності операції. 

Мансі був у Erlanger, коли на телефони почали надходити перші сповіщення алгоритму, але вони були хибними. Viz довелося рекалібровувати алгоритм, а лікарі й лікарні допомагали зробити остаточний продукт якомога кращим і зручнішим.

Сьогодні компанія має 12 дозволів від FDA на використання алгоритмів для визначення таких хвороб, як інсульт, гіпертрофічна кардіоміопатія (потовщення міокарду, яке може призвести до зупинки серця) і легенева емболія (раптова блокада артерій, які спрямовують кров до легень). У 2020-му Viz.ai увійшла у програму федерального страхування Medicare. 

Вартість послуг Viz для лікарень залежить від їхнього розміру і кількості хвороб, які вони хочуть визначати за допомогою алгоритму компанії. Невелика лікарня може платити лише $50 000 на рік, а велика група лікарень (мережа) може дозволити собі заплатити і понад $1 млн. 

Рятівний діагноз

За словами лікарів, які випробували алгоритм, ШІ вкрай важливий за усунення вад надання медичних послуг у США. Раніше їм доводилося чекати на дзвінок завантаженого радіолога із відділу невідкладної допомоги, коли той визначить, чи є у пацієнта інсульт. Тепер же всі знімки у них у телефонах, що дає змогу швидше підготуватися до операції, і програма надсилає миттєві сповіщення. 

Хоча ШІ критикують за помилки й упередження, Мансі стверджує, що більшість його алгоритмів для медичних знімків мають точність близько 95%, а це значно більше, ніж у більшості лікарів, які не є фахівцями в тому чи іншому напрямі медицини. 

«Згідно із нашою оцінкою середнього показника серед усіх хвороб, якими ми займаємося, менш ніж у 20% випадків пацієнту одразу призначають ідеальний варіант лікування, – пояснює Мансі. – Тобто майже у 80% випадків цього не відбувається».

Взяти, приміром, аневризму. Неправильне встановлення діагнозу трапляється у чверті випадків, коли пацієнти звертаються до своїх сімейних лікарів, невідкладної допомоги чи найближчих клінік. Viz.ai вважає, що її алгоритм для визначення аневризми може поліпшити такий стан речей і вчасно спрямовувати пацієнтів до спеціалістів. 

У дослідженнях 1200 ангіограм у восьми центрах лікування інсультів у Техасі Viz виявила, що 85% пацієнтів із аневризмами не отримали скерування на візит до спеціаліста, попри наявні ризики.

Велика фарма

Останні сім років Viz зосереджувалася на лікарнях і пацієнтах, а сьогодні також працює із фармкомпаніями, виробниками медичних пристроїв і фірмами здоровʼя. Мансі вважає, що може використати свої алгоритми і мережу лікарень-партнерів, аби допомогти тим компаніям випускати свої ліки і пристрої швидше, зосередившись на пацієнтах, яким ці новинки найбільше потрібні. Для фармацевтичних бізнесів, які можуть витратити на розробку одного препарату понад $1 млрд, ефективність надважлива. 

У березні Viz оголосила про багаторічну угоду із Bristol Myers Squibb на застосування ШІ-алгоритму для виявлення гіпертрофічної кардіоміопатії. У цієї фармкомпанії є препарат для лікування даної хвороби під назвою Camzyos (або «Мавакамтен»), який вона отримала після купівлі фірми MyoKardia за $13,1 млрд і тепер намагається розбудувати для нього ринок. Viz отримала схвалення FDA для цього алгоритму у серпні.

Крім того, ШІ-стартап працює і з іншими фармацевтичними та медичними компаніями, такими як Johnson & Johnson і Medtronic.

Потовщення міокарда – це серйозна хвороба, яку важко діагностувати. Багато пацієнтів відчувають незначні симптоми, такі як задишка, тому їх скеровують від одного спеціаліста до іншого у спробах виявити проблему.  

«Деякі пацієнти десятиліттями живуть без встановленого діагнозу, – каже Джош Ламперт, електрофізіолог і медичний директор з машинного навчання у лікарні Mount Sinai Heart. – Ми можемо цьому запобігти, призначити лікування, а у деяких випадках і життя їм урятувати». 

Джеймі Штраусс, клінічна директорка Viz, повідомила, що згідно із їхнім дослідженням, їхній алгоритм зменшує час від звернення до встановлення діагнозу в середньому до 64 днів – раніше на це витрачали пʼять років. 

Генеративний ШІ

Крім фарми, Viz також зацікавилася гарячою темою сьогодення – генеративним ШІ. За словами Мансі, такі системи вкрай необхідні лікарням, особливо невеликим, які обслуговують пацієнтів, що не мають доступу до першокласних дослідницьких центрів. 

Але ці генеративні системи йдуть у додатку із більшими ризиками і перешкодами. Томас Девенпорт, викладач інформаційних технологій, який писав про використання ШІ в медицині, попереджає, що новачкам важко зайти на територію потужних компаній, які надають послуги із обробки електронних медичних карток, з одного боку, і виробників пристроїв медичного зображення, як-то GE і Siemens, з іншого. Річ у тім, що вони самі займаються розвитком генеративних аналітичних систем, які додають до своїх програм чи пристроїв. 

Крім того, значною проблемою залишаються упередження і хибна інформація, до яких схильний генеративний ШІ, але яким зовсім немає місця в медицині. Вищезгаданий Ламперт із Mount Sinai каже, що в захваті від технології, котра може допомогти лікарям бути завжди в курсі всіх досліджень, але його лікарня з обережністю розглядає застосування генеративного ШІ.

«У нас уже є регулювання ШІ в медицині, – каже Мансі. – Гадаю, ці правила та інструкції розширять ще більше, і це правильно».

Источник

No votes yet.
Please wait...

Залишити відповідь

Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *